\
2
A

A
A
a

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
or—— SOCIETY

Deductive Learning [and Discussion]
L. G. Valiant and J. C. Shepherdson

Phil. Trans. R. Soc. Lond. A 1984 312, 441-446
doi: 10.1098/rsta.1984.0069

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1984 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;312/1522/441&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/312/1522/441.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. A 312, 441-446 (1984) [ 441 ]

Printed in Great Britain

Deductive learning

By L. G. VALIANT
Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

A non-technical discussion of a new approach to the problem of concept learning
in the context of artificial devices is given. Learning is viewed as a process of acquiring
a program for recognizing a concept from an environment that does not reveal an
explicit description of the program but only suggests it by such means as identifying
positive examples of it. The proposed model makes possible a study of learning that
reconciles three requirements: the classes of concepts that can be learnt are relevant
for general purpose knowledge; they can be characterized; the process of learning
them is computationally feasible.
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1. INTRODUCTION

We consider the following computational model of knowledge. A robot receives information
from the outside world via a set of primitive Boolean variables x,, ..., x,. Its task is to recognize
whether various predicates or concepts are exemplifed in the information presented. The
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knowledge base of the robot is a set of programs fj,...,f, that compute Boolean functions
F,...,F, respectively, one corresponding to each concept. These programs may use each
other as subroutines. They can take as input parameters both the primitive variables and the
output of other programs.

The question we ask is: how can the robot acquire a program for a further function F,,,
if no source for providing an explicit listing of that program is available? In this paper we
describe such a process of program acquisition without being programmed as learning. This is a central
issue in artificial intelligence. A primary goal there is to provide machines with human-like
skills for which satisfactory algorithms are often unknown. Even when such algorithms are
known the problem of adding one to a knowledge base that is already very complex and difficult
to understand may present difficulties.

Our purpose here is to formulate and discuss a rigorous approach to understanding such
learning processes. A first aim would be to delimit the class of functions that are learnable from
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those that are not. In this model the impediment to learnability is computational complexity.
If members of a class of programs can be acquired by learning only in exponentially many steps
then this class will not be learnable in practice. On the positive side we expect that the model
will provide particular proposals for realistic learning systems. A more complete treatment of
our approach appears elsewhere (Valiant 1984).

THE ROYAL
SOCIETY

Learning is often associated with the notion of induction. This association emphasizes the
fact that if we are deriving a general principle from a limited number of examples, say, then
there is, inevitably, some element of inspiration or guesswork involved, since the information
available is simply insufficient for a deduction to be made with certainty.

In our title we use the word deductive to emphasize the contrary point. Human learning
often shows remarkable properties of convergence. In large populations there is a high degree
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442 L.G. VALIANT

of agreement on the meaning of thousands of words as they relate to everyday situations. This
suggests that highly reliable program acquisition may be feasible even in the absence of explicit
programming. Hence it is reasonable to insist that our study of learning be disciplined by
insistence on fast convergence.

One motivation of this study is encapsulated in the informal notion of an ‘optimal learning
situation’. Here a robot eager to learn, already possessing much knowledge as well as the best
general purpose learning strategies, wishes to learn its next new concept from a teacher that
understands the concept well and is willing to go to any lengths to impart to the robot a
recognition algorithm for the concept, short of providing an explicit description of such a
program.

To give a precise meaning to the above we have to define the learning protocol, the manner
of interaction that is allowed between the learner and teacher. This will typically include the
teacher making positive or negative identifications of the concept for various inputs, and,
possibly, the teacher answering questions posed by the learner. We call this study that of
learnability because its aims include that of understanding the maximal limits of the learning
phenomenon that are feasible with reasonable learning protocols.

To represent knowledge and programs we shall use propositional calculus expressions. On
the one hand they are so simple and central in knowledge representation that it is difficult to
imagine how the learning issue can be understood without considering them. As we shall see,
however, the task of learning even in this limited context poses serious problems. It would appear
to be over ambitious to attempt much more before the questions raised here are better
understood.

The study of learning that we suggest is, in the first instance, a theoretical one in the spirit
of, say, computability theory. Whether it will ever be efficacious to make artificial systems with
general purpose learning capabilities depends on whether efficient strategies exist and can be
discovered for classes of programs that are substantial enough. It may turn out that even if
very good strategies exist, they only start being usable when a very large knowledge base has
been built. In that case the validation of such strategies for practical purposes would involve
major challenges for the experimenter.

Extensive bibliographies on previous work on inductive inference and machine learning are
given by Angluin & Smith (1982) and Michalski et al. (1983).

2. A PROBLEM OF FORMULATION

We consider propositional expressions in a set of propositional variables p,,..., p,. An
extremely simple kind of expression is a product or monomial. For example, f= p,p, p; is a
monomial. It takes the value ‘true’ or ‘1’ if p, and p;, are both true and p, false, whatever values
the other variables take. The expression f is ‘false’ if p, is false or if p; is false or if p, is true
or if any combination of these conditions holds.

It is realistic to consider that t is very large. A system may have large numbers of primitive
inputs and of functions that are programmed or previously learnt. Each single function may be
dependent on only a small fraction of the t variables.

A positive example of a function or expression will be a vector of truth assignments to the
variables that makes the function or expression true. Thus (p, = 1,p, = 1, p, = 0, p; = 1) will
be a positive example of the particular expression f but (p, =0, p, =0, p; = 1, pg = 1) and
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(py =1, p, = 0) will not be. The omission of a variable p;, or equivalently setting p; = *,
denotes that the value of p; is undetermined. It is important to allow for undetermined variables
because in realistic situations confirmations of a concept may be obtained from the values of
a small set of the variables. The values of some of the remaining variables may not be obtainable.
For example, in recognizing an ‘elephant’ the colour, size, location, etc., may all be relevant
but it may be possible to make a positive identification even when the values of some of the
variables are unknown.

Suppose that a robot is presented with a large number N of vectors that are identified as
positive examples of f. The task of the robot is to deduce reliably an expression that equals or
in some sense approximates f. The question of defining a plausible learning mechanism even
for such apparently trivial expressions as monomials is problematic and was previously
unsolved. The difficulty lies in giving a definition of learning that is both realistic and
computationally feasible.

A first attempt at a definition may be to insist that f be deducible from any set of N distinct
positive examples. This, however, is unrealistically optimistic and may require N to be
exponentially large in terms of t. For example, suppose that f = p, say and N = 2it; then an
unfortunate choice of examples would assign p, = p, = ... =py, = 1 and would vary over all
combinations of assignments to the remaining variables. These examples clearly reveal little
about the nature of f.

A second attempt may be to define some natural probabilistic distribution for the relative
probability of occurrence of the various vectors. For example, we could say that all the 2t!
vectors consistent with f = p, have the same probability of occurring. This model would make
unfortunate choices of examples unlikely and would therefore solve the problem technically.
Unfortunately in the real world this assumption will nearly always be totally false. The actual
distributions for the various concepts of interest may bear no relation to each other and will
not be known a priori in general.

3. A PROBABILISTIC MODEL

The solution proposed to the above predicament is a very simple one: assume that vectors
of variable values do occur in nature with some fixed probabilistic distribution. Allow this
distribution, however, to be completely arbitrary and unknown. Furthermore require of the
learner only the ability to deduce an expression that approximates f in that if a vector is
drawn randomly from the distribution then the deduced expression may disagree with f on
this vector, but the probability of this happening is small. Thus, pursuing the example f = p,
of the previous section, suppose that p, = 1 in 999, of positive examples of f. Then a learner
who has not seen a positive example with p, = 0 or p, undetermined, may deduce that f = p, p,.
Our definitions tolerate this inaccuracy because the learner’s program p, p, will in that case
indeed be equivalent to p, for 999, of the time in real-world examples of the concept.

The deduction algorithm for the expression we assume above is a simple one: let the deduced
expression be the product of all p; or p; that are determined to be true in a// the positive examples
seen by the learner.

Now without knowing anything about the distribution the following is provable. For any
number h > 1, if 2h(t+1log, h) positive examples are drawn from the distribution, then with
probability at least 1 —h™! the deduced expression g will have the property: (i) for any vector
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v for which g is true fis also true; (ii) if a vector v for which fis true is drawn at random with
probability determined by the distribution of such positive examples of f, then v will make g
true with probability at least 1 —h™!.

The possibility of proving such results suggests the general definition of what it means for
a class of expressions, or more generally programs, to be learnable. Suppose that X is a class
of programs. For a typical member f € X we denote the size of f by the parameter s, and its
arguments by p,, ..., p,- We denote an assignment of truth values to p,, ..., p, by the vector
ve{0, 1, x}*. We denote by D and D, respectively, the arbitrary probability distributions over
{v|f is true on v} and {v|f is not true on v}. Thus D(v) denotes the relative probability of
occurrence of v among vectors that make f true. D(v) is the corresponding distribution for the
complement set. Note that if f is not true on input v it may be either false or undefined.

The class X is learnable with respect to a learning protocol L if there is a deduction procedure
using L such that

(i) the procedure runs in time polynomial in s, t and in an adjustable parameter h, and

(ii) for all fe X and all D, D the algorithm will deduce, with probability at least 1 —h™1,
a program g€ X having the properties:

(a) Z{D(v)|fis true but g is not true on v} < h™1;
(b) Z{D(v)|fis not true but g is true on v} < h™1L,

In the example cited earlier the learning protocol consists of a supply of positive examples.
The learner is allowed to call a procedure EXAMPLES, which always returns the value of
a vector v such that fis true on v. The probability that a particular v is provided is exactly
D(v).

The definition given of learnability allows for two-sided error. In the example we gave of
learning single monomials, it is clear that if f(v) # 1 it is impossible that g(v) = 1. In this case,
and in all the other cases so far considered (Valiant 1984), learning can be achieved with only
one-sided error. Learnability with one-sided error is defined in the same way as for two-sided error,
except that condition (ii) (b) is replaced by ‘for all v if g is true on v then so is {*. This is an
important advantage because it allowed us to omit mentioning D. While it may be reasonable
to discuss the distribution of the attributes of elephants, we may prefer not discussing the
distribution of the attributes of non-elephants.

The most interesting class of propositional expressions that we can show to be learnable (with
one-sided error) is the class of k-CNF expressions with at most k literals (negated or unnegated
variables) in each clause. For example (p, + P;) (P, +P3) (P2 + P3) is a 2-CNF expression. 3-CNF
expressions are already complex in the sense that it is NP-hard to determine whether such an
expression has the value zero for all vectors v. Nevertheless the following theorem can be proved.

THEOREM 1. For every positive integer k the class of k-CNF expressions is learnable with respect to the
positive examples learning protocol.

The expressions that appear to be easiest to understand for humans are disjunctive normal
form (or sum of product) expressions, such as p, p; Py + P Ps- An expression is monotone if no
variable occurs negated. A very immediate question that is currently unresolved is whether
monotone DNF expressions are learnable with respect to the positive examples protocol.
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4. ORACLES

The idea of learning from positive or negative examples is appealing because the teacher
has only the minimal role of making the identifications. Unfortunately the classes of expressions
that we can show to be learnable from examples alone are very limited. It is therefore necessary
to ask how we can formulate more active forms of teaching in the context of an optimal learning
situation. The solution we propose is that of introducing various oracles. Each oracle can answer
questions of a specified nature about the concept to be learnt. The learning protocol allows
the learner to pose questions and receive answers to them.

A simplest oracle is one of necessity. Given a vector of truth assignments to a subset of the
variables it will determine whether the vector is a positive example or not. Note that if a vector
is a positive example then so will also any vector obtained from it by making some
undetermined variables determined. The power of such an oracle is illustrated by the fact that
if the learner has to decide whether the correct expression sought is p, or p, p, it can simply
input ‘p, = 1’ to the oracle and will get a positive answer if the correct formula is p,;, and a
negative one if it is p, p,. The following theorem can be proved.

TueOREM 2. The class of monotone disjunctive normal form expressions is learnable with respect to the
protocol that allows positive examples and the necessity oracle.

The size measure in theorem 2 is the number of symbols in the expression. When negations
are allowed, if the size measure is redefined appropriately a similar result can be proved. An
interesting open question is whether monotone CNF expressions with no bound on clause size
are learnable via positive examples and the necessity oracle.

One can define a variety of other oracles for kinds of questions that a person understanding
a concept may be expected to be able to answer. For example a possibelity oracle would tell
given a vector whether it is possible to make the expression true by giving the undetermined
variables some suitable values. Thus the assertion ‘large = 1’ is a vector for which it is possible
but not necessary that the described thing is an elephant. An oracle of relevant possibility would
tell, given a vector, whether by making determined some undetermined variables, one can
obtain a vector that is (necessarily) a positive example, but such that making any determined
variable undetermined in it would not give a (necessarily) positive example. Thus ‘large = 1’
is relevantly possible if in some conjunctive criterion for elephants the question of largeness cannot
be dropped.

One can say informally that an oracle is reasonable if it gives insight into the learning process.
Oracles that give explicit answers about the syntactic description of the program to be learnt
are not reasonable because they are thinly disguised programming languages.

5. LIMITS OF LEARNABILITY

It is conceivable that all programs, when described as Boolean circuits, say, are learnable.
There is, however, substantial circumstantial evidence from cryptography that this is not so
and that the class of learnable programs is very restricted. One task of cryptography is to find
encoding schemes such that an enemy that has access to even a large sample of previous messages
and their encodings is unable to replicate the encoding algorithm. Our notion of learnability,
at least when restricted to protocols using examples alone, requires the converse property. We
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require that from the input-output behaviour of any member of a class of programs the
particular program be easily replicated. Furthermore in encoding schemes no member of the
class should be deducible, while in a learnable class we expect them all to be deducible. Hence
the widely conjectured existence of encoding schemes that are computationally simple suggests
that learnable classes of programs may be extremely limited.

In the light of the above observation the question arises as to how the acquisition of complex
programs or skills should be viewed. The view we propose is that while simple programs can
be learnt, in our sense, in anything more complicated a programming element becomes
essential. Itis conceivable, for example, that given the state of knowledge and learning strategies
of a particular robot the concept of ‘elephant’ is not learnable for it. It may be, however, that
the notion of ‘trunk’ is learnable and that, once that concept is learnt, ‘elephant’ becomes
learnable also. Such intervention by the teacher in identifying and sequencing intermediate
concepts we classify as programming.

This research was supported in part by National Science Foundation Grant MCS-83-02385.
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Daiscussion

J. C. SHEPHERDsSON (School of Mathematics, University of Bristol, U.K.). Professor Valiant
emphasized that he was talking about deductive inference. Do his results apply also to other kinds
of inference, for example to machines that make random guesses on the way to fixing on a
program? Could he argue that they do, because a random element could always be replaced by
a pseudo-random element that could be computed in polynomial time?

L. G. VaLianT. The word deductive was intended to emphasize that the formulation constrains
the learning process to converge quickly and in a demanding manner. The formulation contains
a probabilistic element arising from the probabilistic distribution on the example space and,
as it happens, already allows for the possibility that additionally there is randomizaton in the
learning procedure itself. Although I have not found an application for this idea it is certainly
worth pursuing. Whether true randomness can be replaced by pseudo-randomness in the
context of polynomial time algorithms is still an open problem.
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